Surface chemistry and pore size affect carrier properties of mesoporous silicon microparticles
详细信息    查看全文
文摘
Six different types of mesoporous silicon microparticles were prepared to evaluate the effect of surface treatment and pore sizes on their properties as drug carriers. The studied porous silicon particles were as-anodized, thermally carbonized (TCPSi) and thermally oxidized (TOPSi) in addition to three novel ones: annealed TCPSi, annealed TOPSi and thermally hydrocarbonized porous silicon (THCPSi). Drug dissolution at pH 5.5 and physical and chemical stabilities after 3 months of storage were used as experimental models to investigate the loaded particles. Loading degrees of ibuprofen in the particles were determined by several methods before and after storage, and the results were in good agreement with each other. Loading improved the dissolution rate of ibuprofen in all the studied cases, while the hydrophilic TCPSi material resulted in the fastest dissolution and the most stable mesoporous microparticles. The release profiles of ibuprofen did not change markedly during storage. The effect of storage on the loading degrees of the other PSi microparticles than the unstable (easily oxidized) as-anodized porous silicon was not notable.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700