Mutagenic specificity of N
详细信息    查看全文
文摘
3-Nitrobenzanthrone (3-NBA) is a potent environmental mutagen and a potential human carcinogen present in diesel exhaust and airborne particulates. N-acetoxy-3-aminobenzanthrone (N-Aco-ABA) has been shown to be a major reactive metabolite of 3-NBA, which mainly produces adducts with guanine and adenine in cellular DNA. Here we analyzed mutations induced by N-Aco-ABA using supF shuttle vector plasmids to elucidate the mutagenic specificity of 3-NBA in human cells. Base sequence analysis of more than 100 plasmids with supF mutations induced in wildtype and DNA repair-deficient XP cells revealed that the major mutation was base substitutions of which the majority (42 and 38 % , respectively) were G:C to T:A transversions. The next major mutation was G:C to A:T and A:T to G:C base substitutions in wildtype and XP cells, respectively. The DNA polymerase stop assay using N-Aco-ABA-treated plasmids as a template showed that most stop signals, i.e., adducted sites, appeared at G:C sites. These results suggest that N-Aco-ABA binds preferably to guanine rather than adenine, and adducted adenine is repaired more efficiently by the nucleotide excision repair. Error-prone DNA polymerases could insert adenine at sites opposite to N-Aco-ABA-adducted guanine, which leads to G:C to T:A transversion. These findings could be very important to evaluate the human lung cancer risk of environmental 3-NBA.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700