Free vibration of conducting nanoplates exposed to unidirectional in-plane magnetic fields using nonlocal shear deformable plate theories
详细信息    查看全文
文摘
The alteration of the frequencies of nanostructures via an external field is of great importance in the design of nanomechanical devices whose vibrations should be appropriately controlled. Herein, free in-plane and out-of-plane vibration behaviors of conducting rectangular nanoplates subjected to unidirectional in-plane steady magnetic fields are of concern. To this end, the body forces exerted on the nanoplate based on the hypotheses of Kirchhoff, Mindlin, and higher-order plate theories are obtained. Subsequently, the nonlocal versions of the equations of motion of the conducting nanoplate for the suggested plate models are extracted. The presented formulations show that the small-scale parameter is incorporated into the exerted forces on the nanoplate due to the applied magnetic field. For the proposed models, the frequencies pertinent to the in-plane and out-of-plane vibrations of the nanoplates are evaluated. In the continuing, the roles of the length-to-thickness ratio, length-to-width ratio, small-scale parameter, and magnetic field strength on both in-plane and out-of-plane frequencies are addressed. The capabilities of the proposed models in predicting such frequencies are also explained and discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700