A Hierarchical Markov Modeling Approach for the Segmentation and Tracking of Deformable Shapes
详细信息    查看全文
文摘
In many applications of dynamic scene analysis, the objects or structures to be analyzed undergo deformations that have to be modeled. In this paper, we develop a hierarchical statistical modeling framework for the representation, segmentation, and tracking of 2D deformable structures in image sequences. The model relies on the specification of a template, on which global as well as local deformations are defined. Global deformations are modeled using a statistical modal analysis of the deformations observed on a representative population. Local deformations are represented by a (first-order) Markov random process. A model-based segmentation of the scene is obtained by a joint bayesian estimation of global deformation parameters and local deformation variables. Spatial or spatio-temporal observations are considered in this estimation procedure, yielding an edge-based or a motion-based segmentation of the scene. The segmentation procedure is combined with a temporal tracking of the deformable structure over long image sequences, using a Kalman filtering approach. This combined segmentation-tracking procedure has produced reliable extraction of deformable parts from long image sequences in adverse situations such as low signal-to-noise ratio, nongaussian noise, partial occlusions, or random initialization. The approach is demonstrated on a variety of synthetic as well as real-world image sequences featuring different classes of deformable objects.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700