A convex programming approach to the inverse kinematics problem for manipulators under constraints
详细信息    查看全文
文摘
We propose a novel approach to the problem of inverse kinematics for possibly redundant planar manipulators. We show that, by considering the joints as point masses in a fictitious gravity field, and by adding proper constraints to take into account the length of the links, the kinematic inversion may be cast as a convex programming problem. Convex constraints in the decision variables (in particular, linear constraints in the workspace) are easily managed with the proposed approach. We also show how to exploit the idea for avoiding obstacles while tracking a reference end-effector trajectory and discuss how to extend the results to some kinds of non-planar manipulators. Simulation results are reported, showing the effectiveness of the approach.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700