Simultaneous induction of calcium transients in embryoid bodies using microfabricated electrode substrates
详细信息    查看全文
文摘
Precise control of differentiation processes of pluripotent stem cells is a key component for the further development of regenerative medicine. For this purpose, combining a cell-aggregate-size treatment for regulating intercellular signal transmissions and an electrical stimulation technique for inducing cellular responses is a promising approach. In the present study, we developed microfabricated electrode substrates that allow simultaneous stimulation of embryoid bodies (EBs) of P19 cells. Mouse embryonal carcinoma P19 cells can be induced to differentiate into three germ layers and serve as a promising stem cell model. Microcavity¨Carray patterns were fabricated onto indium¨Ctin¨Coxide (ITO) substrates using a standard photo-lithography technique, and uniform-sized EBs of P19 cells were inserted into each microcavity. Electrical stimulation was applied to the EBs through substrate electrodes and stimulus-induced intracellular calcium transients were monitored. We confirmed that the developed electrode device could simultaneously stimulate smaller (200 ¦Ìm diameter) and larger (500 ¦Ìm diameter) EBs inserted in the microcavities and induce specific spatio-temporal patterns of intracellular calcium transients in the EBs with fine reproducibility. We concluded that the developed microcavity array with embedded electrodes could simultaneously and effectively stimulate uniform-sized EBs inserted in it. Therefore, it is a promising experimental tool for precisely controlling cell differentiation processes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700