Smart octrees: Accurately integrating discontinuous functions in 3D
详细信息    查看全文
文摘
This paper presents an efficient and accurate method for the integration of discontinuous functions on a background mesh in three dimensions. This task is important in computational mechanics applications where internal interfaces are present in the computational domain. The proposed method creates boundary-conforming integration subcells for composed numerical quadrature, even in the presence of sharp geometric features (e.g. edges or vertices). Similar to the octree procedure, the algorithm subdivides the cut elements into eight octants. However, the octant nodes are moved onto the interface, which allows for a robust resolution of the intersection topology in the element while maintaining algorithmic simplicity. Numerical examples demonstrate that the method is able to deliver highly accurate domain integrals with a minimal number of quadrature points. Further examples show that the proposed method provides a viable alternative to standard octree-based approaches when combined with the Finite Cell Method.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700