Large eddy simulation of a medium-scale methanol pool fire using the extended eddy dissipation concept
详细信息    查看全文
文摘
The eddy dissipation concept (EDC) is extended to the large eddy simulation (LES) framework following the same logic of the turbulent energy cascade as originally proposed by Magnussen but taking into account the distinctive roles of the sub-grid scale turbulence. A series of structure levels are assumed to exist under the filter width 鈥溛斺€?in the turbulent energy cascade which spans from the Kolmogorov to the integral scale. The total kinetic energy and its dissipation rate are expressed using the sub-grid scale (SGS) quantities. Assuming infinitely fast chemistry, the filtered reaction rate in the EDC is controlled by the turbulent mixing rate between the fine structures at Kolmogorov scales and the surrounding fluids. The newly extended EDC was implemented in the open source FireFOAM solver, and large eddy simulation of a 30.5 cm diameter methanol pool fire was performed using this solver. Reasonable agreement is achieved by comparing the predicted heat release rate, radiative fraction, velocity and its fluctuation, temperature and its fluctuation, turbulent heat flux, SGS and total dissipation rate, SGS and total kinetic energy, time scales, and length scales with the corresponding experimental data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700