The role of RGS protein in agonist-dependent relaxation of GIRK currents in Xenopus oocytes
详细信息    查看全文
文摘
G protein coupled inward rectifier K+ channels (GIRK) are activated by the G¦Â¦Ã subunits of G proteins upon activation of G protein coupled receptors (GPCRs). Receptor-stimulated GIRK currents are known to possess a curious property, termed ¡°agonist-dependent relaxation,?denoting a slow current increase upon stepping the membrane voltage from positive to negative potentials. Regulators of G protein signaling (RGS) proteins have earlier been implicated in this phenomenon since RGS coexpression was required for relaxation to be observed in heterologous expression systems. However, a recent study presented contrasting evidence that GIRK current relaxation reflects voltage sensitive agonist binding to the GPCR. The present study re-examined the role of RGS protein in agonist-dependent relaxation and found that RGS coexpression is not necessary for the relaxation phenomenon. However, RGS4 speeds up relaxation kinetics, allowing the phenomenon to be observed using shorter voltage steps. These findings resolve the controversy regarding the role of RGS protein vs. GPCR voltage sensitivity in mediating agonist-dependent relaxation of GIRK currents.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700