Network modeling of multiple-port, multiple-vibration-mode transducers and resonators
详细信息    查看全文
文摘
A modeling procedure is presented for multiple-port, multiple-vibration-mode transducers. Unique features of the procedure include the use of modal coordinates to describe deformations of the mechanical structure, the use of a network analog for each vibration mode of the structure, and the selection of modal velocity, rather than a particular physical velocity on the structure, as the mechanical flow variable in each modal network. Finite element analysis is used only to compute a discrete set of salient circuit parameters, with all other analysis and design computations performed using the networks. The approach is computationally efficient and assists with providing insights into the design of actuators and micromechanical resonators, where the generation and suppression of particular vibration modes may be important. A micromachined, multiple-port piezoelectric microphone with in-plane directivity is presented as a case study to demonstrate application of the procedure. Model verification is performed by comparing simulated and measured port-to-port transfer functions over a frequency range spanning several vibration modes of the device. The modeling procedure can address multiple-port sensor response to distributed loadings, selective excitation and suppression of modes in actuator applications, and mixed sensing and actuator applications such as the demonstrated port-to-port measurements.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700