A Combined column generation and heuristics for railway short-term rolling stock planning with regular inspection constraints
详细信息    查看全文
文摘
The aim of railway rolling stock planning problem is to find an optimal allocation of train-sets for a given set of trips in the train timetable in order to minimize the total cost. We propose a column generation and Lagrangian relaxation heuristics for short-term rolling stock planning problems with regular inspection constraints. The problem is formulated as a subtour traveling salesman problem to find a set of elementary shortest cycles that cover all trips in the timetable. In the proposed method, a tight lower bound is obtained from the continuous relaxation of Dantzig–Wolfe reformulation by column generation. The pricing problem can be formulated as an elementary shortest cycle problem with resource constraints. A labeling algorithm is applied to solve the pricing problem. In order to reduce the computational effort, we apply a general state space augmenting algorithm to solve the pricing problems. Computational results show that the proposed column generation and Lagrangian relaxation heuristics can find good lower and upper bounds for 300 trips within reasonable computing time.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700