Lamellar-interpenetrated Al−Si−Mg/Al2O3−ZrO2 composites prepared by freeze casting and pressureless infiltration
详细信息    查看全文
文摘
Using freeze casting and pressureless infiltration methods, we prepared lamellar Al−Si−Mg/Al2O3−ZrO2 composites with initial ceramic loading of 30 vol% and different Al2O3:ZrO2 weight ratios (Al2O3:ZrO2=1:9, 3:7, 5:5, 7:3 and 9:1). The resultant composites inherited the lamellar structure of the Al2O3−ZrO2 scaffolds, and the thickness of both metal and ceramic layers showed a trend of first increase and then decrease with increasing Al2O3 content. During pressureless infiltration, multiple chemical reactions took place between ZrO2 and the Al−12Si−10Mg alloy and the main reaction products were (Al1−m, Sim)3Zr, Al2O3 and ZrSi2 phases. The degree of the reaction depended on the ZrO2 content in the ceramic composition. In general, the compressive strength of the composites decreased with increasing Al2O3 content, but three-point bending strength showed a first decrease and then increase. When Al2O3:ZrO2=1:9, the compressive and bending strength of the composites reached about 997±60 MPa and 426±10 MPa, respectively. A simple model was proposed to illustrate the fracture mode and toughening mechanism of the composites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700