Structural instabilities during cyclic loading of ultrafine-grained copper studied with micro bending experiments
详细信息    查看全文
文摘
The cyclic mechanical properties and microstructural stability of severe plastically deformed copper were investigated by means of micro bending experiments. The ultrafine-grained structure of OFHC copper was synthesized utilizing the high pressure torsion (HPT) technique. Micron sized cantilevers were focused-ion-beam milled and subsequently tested within a scanning electron microscope in the low cycle fatigue regime at strain amplitudes in the range of 1.1 − 3.2 ∗ 10−3. It was found that HPT processed ultra-fine grained copper is prone to cyclic softening, which is a consequence of grain coarsening in the absence of shear banding in the micro samples. Novel insights into the grain coarsening mechanism were revealed by quasi in-situ EBSD scans, showing i) continuous migration of high angle grain boundaries, ii) preferential growth of larger grains at the expense of adjacent smaller ones, iii) a reduction of misorientation gradients within larger grains if the grain structure in the neighborhood is altered and iv) no evidence that a favorable crystallographic orientation drives grain growth during homogeneous coarsening at moderate accumulated strains, tested here.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700