Higher Hickerson formula
详细信息    查看全文
文摘
In <span id="bbr0110">[11]span>, Hickerson made an explicit formula for Dedekind sums <span id="mmlsi1" class="mathmlsrc"><span class="formulatext stixSupport mathImg" data-mathURL="/science?_ob=MathURL&_method=retrieve&_eid=1-s2.0-S0022314X16301548&_mathId=si1.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=a793f7facdb680f1d93c110e62574a92" title="Click to view the MathML source">s(p,q)span><span class="mathContainer hidden"><span class="mathCode">si1.gif" overflow="scroll">sstretchy="false">(p,qstretchy="false">)span>span>span> in terms of the continued fraction of <span id="mmlsi2" class="mathmlsrc"><span class="formulatext stixSupport mathImg" data-mathURL="/science?_ob=MathURL&_method=retrieve&_eid=1-s2.0-S0022314X16301548&_mathId=si2.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=c754417fa40160ef3561c82ad5e61478" title="Click to view the MathML source">p/qspan><span class="mathContainer hidden"><span class="mathCode">si2.gif" overflow="scroll">pstretchy="false">/qspan>span>span>. We develop analogous formula for generalized Dedekind sums <span id="mmlsi3" class="mathmlsrc"><span class="formulatext stixSupport mathImg" data-mathURL="/science?_ob=MathURL&_method=retrieve&_eid=1-s2.0-S0022314X16301548&_mathId=si3.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=50921a92e992d9bcb46d77112310dc01" title="Click to view the MathML source">s<sub>i,jsub>(p,q)span><span class="mathContainer hidden"><span class="mathCode">si3.gif" overflow="scroll">sub>w>sw>w>i,jw>sub>stretchy="false">(p,qstretchy="false">)span>span>span> defined in association with the <span id="mmlsi4" class="mathmlsrc"><span class="formulatext stixSupport mathImg" data-mathURL="/science?_ob=MathURL&_method=retrieve&_eid=1-s2.0-S0022314X16301548&_mathId=si4.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=6d8bba80a3ff6f6fa5cbf0fd6f7131e9" title="Click to view the MathML source">x<sup>isup>y<sup>jsup>span><span class="mathContainer hidden"><span class="mathCode">si4.gif" overflow="scroll">sup>w>xw>w>iw>sup>sup>w>yw>w>jw>sup>span>span>span>-coefficient of the Todd power series of the lattice cone in <span id="mmlsi5" class="mathmlsrc"><span class="formulatext stixSupport mathImg" data-mathURL="/science?_ob=MathURL&_method=retrieve&_eid=1-s2.0-S0022314X16301548&_mathId=si5.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=a6e0cd47c5e9badb8a166515fc840d6b" title="Click to view the MathML source">R<sup>2sup>span><span class="mathContainer hidden"><span class="mathCode">si5.gif" overflow="scroll">sup>w>struck">Rw>w>2w>sup>span>span>span> generated by <span id="mmlsi6" class="mathmlsrc"><span class="formulatext stixSupport mathImg" data-mathURL="/science?_ob=MathURL&_method=retrieve&_eid=1-s2.0-S0022314X16301548&_mathId=si6.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=92f11dee46d081ca88d5b5d14cd7c151" title="Click to view the MathML source">(1,0)span><span class="mathContainer hidden"><span class="mathCode">si6.gif" overflow="scroll">stretchy="false">(1,0stretchy="false">)span>span>span> and <span id="mmlsi7" class="mathmlsrc"><span class="formulatext stixSupport mathImg" data-mathURL="/science?_ob=MathURL&_method=retrieve&_eid=1-s2.0-S0022314X16301548&_mathId=si7.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=3481483978028da6fd62d31f9d298748" title="Click to view the MathML source">(p,q)span><span class="mathContainer hidden"><span class="mathCode">si7.gif" overflow="scroll">stretchy="false">(p,qstretchy="false">)span>span>span>. The formula generalizes Hickerson's original one and reduces to Hickerson's for <span id="mmlsi8" class="mathmlsrc"><span class="formulatext stixSupport mathImg" data-mathURL="/science?_ob=MathURL&_method=retrieve&_eid=1-s2.0-S0022314X16301548&_mathId=si8.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=956405bad31eb5d3a361ec5075979e01" title="Click to view the MathML source">i=j=1span><span class="mathContainer hidden"><span class="mathCode">si8.gif" overflow="scroll">i=j=1span>span>span>. In the formula, generalized Dedekind sums are divided into two parts: the integral <span id="mmlsi9" class="mathmlsrc">w the MathML source" class="mathImg" data-mathURL="/science?_ob=MathURL&_method=retrieve&_eid=1-s2.0-S0022314X16301548&_mathId=si9.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=099c6f0e102a6cedc9ffbf32a46641bb">ss="imgLazyJSB inlineImage" height="21" width="55" alt="View the MathML source" title="View the MathML source" src="/sd/grey_pxl.gif" data-inlimgeid="1-s2.0-S0022314X16301548-si9.gif">script>style="vertical-align:bottom" width="55" alt="View the MathML source" title="View the MathML source" src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S0022314X16301548-si9.gif">script><span class="mathContainer hidden"><span class="mathCode">si9.gif" overflow="scroll">subsup>w>sw>w>ijw>w>Iw>subsup>stretchy="false">(p,qstretchy="false">)span>span>span> and the fractional <span id="mmlsi10" class="mathmlsrc">w the MathML source" class="mathImg" data-mathURL="/science?_ob=MathURL&_method=retrieve&_eid=1-s2.0-S0022314X16301548&_mathId=si10.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=d90ac1223f8bb67d181b25c20727c386">ss="imgLazyJSB inlineImage" height="21" width="55" alt="View the MathML source" title="View the MathML source" src="/sd/grey_pxl.gif" data-inlimgeid="1-s2.0-S0022314X16301548-si10.gif">script>style="vertical-align:bottom" width="55" alt="View the MathML source" title="View the MathML source" src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S0022314X16301548-si10.gif">script><span class="mathContainer hidden"><span class="mathCode">si10.gif" overflow="scroll">subsup>w>sw>w>ijw>w>Rw>subsup>stretchy="false">(p,qstretchy="false">)span>span>span>. We apply the formula to Siegel's formula for partial zeta values at a negative integer and obtain a new expression which involves only <span id="mmlsi9" class="mathmlsrc">w the MathML source" class="mathImg" data-mathURL="/science?_ob=MathURL&_method=retrieve&_eid=1-s2.0-S0022314X16301548&_mathId=si9.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=099c6f0e102a6cedc9ffbf32a46641bb">ss="imgLazyJSB inlineImage" height="21" width="55" alt="View the MathML source" title="View the MathML source" src="/sd/grey_pxl.gif" data-inlimgeid="1-s2.0-S0022314X16301548-si9.gif">script>style="vertical-align:bottom" width="55" alt="View the MathML source" title="View the MathML source" src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S0022314X16301548-si9.gif">script><span class="mathContainer hidden"><span class="mathCode">si9.gif" overflow="scroll">subsup>w>sw>w>ijw>w>Iw>subsup>stretchy="false">(p,qstretchy="false">)span>span>span> the integral part of generalized Dedekind sums. This formula directly generalizes Meyer's formula for the special value at 0. Using our formula, we present the table of the partial zeta value at <span id="mmlsi11" class="mathmlsrc"><span class="formulatext stixSupport mathImg" data-mathURL="/science?_ob=MathURL&_method=retrieve&_eid=1-s2.0-S0022314X16301548&_mathId=si11.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=689ff79aa1b80b4bb5d1d0ad78b952b6" title="Click to view the MathML source">s=&minus;1span><span class="mathContainer hidden"><span class="mathCode">si11.gif" overflow="scroll">s=&minus;1span>span>span> and &minus;2 in more explicit form. Finally, we present another application on the equidistribution property of the fractional parts of the graph <span id="mmlsi12" class="mathmlsrc">w the MathML source" class="mathImg" data-mathURL="/science?_ob=MathURL&_method=retrieve&_eid=1-s2.0-S0022314X16301548&_mathId=si12.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=02df000922d3a943c32a4fa5535f840f">ss="imgLazyJSB inlineImage" height="29" width="167" alt="View the MathML source" title="View the MathML source" src="/sd/grey_pxl.gif" data-inlimgeid="1-s2.0-S0022314X16301548-si12.gif">script>style="vertical-align:bottom" width="167" alt="View the MathML source" title="View the MathML source" src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S0022314X16301548-si12.gif">script><span class="mathContainer hidden"><span class="mathCode">si12.gif" overflow="scroll">stretchy="true" maxsize="3.8ex" minsize="3.8ex">(pq,sub>w>Rw>w>i+jw>sub>sup>w>qw>w>i+j&minus;2w>sup>sub>w>sw>w>ijw>sub>stretchy="false">(p,qstretchy="false">)stretchy="true" maxsize="3.8ex" minsize="3.8ex">)span>span>span> for a certain integer <span id="mmlsi13" class="mathmlsrc"><span class="formulatext stixSupport mathImg" data-mathURL="/science?_ob=MathURL&_method=retrieve&_eid=1-s2.0-S0022314X16301548&_mathId=si13.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=285c25c2919bc817ce00b24b2077146a" title="Click to view the MathML source">R<sub>i+jsub>span><span class="mathContainer hidden"><span class="mathCode">si13.gif" overflow="scroll">sub>w>Rw>w>i+jw>sub>span>span>span> depending on <span id="mmlsi14" class="mathmlsrc"><span class="formulatext stixSupport mathImg" data-mathURL="/science?_ob=MathURL&_method=retrieve&_eid=1-s2.0-S0022314X16301548&_mathId=si14.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=feebb1991c9eb9545515f1bc4b33537f" title="Click to view the MathML source">i+jspan><span class="mathContainer hidden"><span class="mathCode">si14.gif" overflow="scroll">i+jspan>span>span>.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700