Relief of the residual stresses in Si3N4/Invar joints by multi-layered braze structure - Experiments and simulation
详细信息    查看全文
文摘
An Ag–Cu–Ti+TiNp/Cu/Ag–Cu three-layered filler was designed to braze Si3N4 ceramic and Invar alloy. The effect of the Cu-foil thickness on the microstructure and the mechanical properties of the brazed joints was investigated. Compared with single-layer Ag–Cu–Ti+TiNp filler, the formation of Fe2Ti and Ni3Ti compounds is widely inhibited by using multi-layered filler. The shear strength of the brazed joint is 47.9% higher than that of joints brazed with single Ag–Cu–Ti+TiNp filler when a 200 μm thick Cu interlayer is used. A simplified unit cell model was designed to obtain the physical properties of the TiNp reinforced filler. The model provides the elastic modulus and yield stress that satisfy the Hashin–Shtrikman bounds and N. Ramakrishnan׳s equations, respectively. In the three-layered brazing, the finite element (FE) model shows that system residual stresses decrease significantly by increasing the thickness of Cu foil in the multi-layered system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700