The enhanced theta-prime (θ′) precipitation in an Al-Cu alloy with trace Au additions
详细信息    查看全文
文摘
Linking the atomic level kinetic precipitation pathways induced by elemental additions to the resulting microstructure is fundamentally desirable for the design of new classes of light alloys. Aberration-corrected scanning transmission electron microscopy (AC-STEM) and first principles calculations were used to investigate the influence of trace Au (200 ppm) additions on precipitation in an Al-Cu-Au alloy. These Au additions resulted in a significant enhancement of the low-temperature age hardening, which was demonstrated to be associated with accelerated precipitate nucleation and growth. Atomic-resolution annular dark field (ADF) imaging showed the clearly reduced critical length and thickness of θ′ precipitates with Au additions, therefore accelerating the nucleation of θ′. Agglomerated Au clusters were observed in θ′ precipitates, which were demonstrated to correspond to a localised energetically favourable state. These observations have been explained through first-principles calculations and relevant thermodynamic modelling. This work provides a potential way to refine the alloy microstructure for improving the mechanical behaviour of light alloys.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700