Electro-dissolution of 30Nb–Ti alloys in methanolic sulfuric acid—Optimal conditions for electropolishing
详细信息    查看全文
文摘
The electro-dissolution behaviour of a (30 at. % ) Niobium–Titanium (NbTi) alloy in non-aqueous methanolic sulfuric acid solution using the rotating disc electrode (RDE) was ascertained. The optimal condition for electropolishing and the mechanism were proposed. The influence of the rotation rate, process temperature and sulfuric acid concentration on the dissolution kinetics was investigated. The dissolution rate (limiting current) increases linearly with increase in rotation rate and follows a Levich behaviour confirming a mass transport controlled process. The temperature dependence in terms of Arrhenius plot renders an activation energy value of E= 16.1 kJ mol−1 for the process. The dissolution rate shows a strong dependence on the sulfuric acid concentration (1 M, 3 M and 5 M). Higher sulfuric acid concentrations lead to decreased dissolution rates (limiting current). The dissolution process is mass transport controlled in all concentrations of sulfuric acid. From an electrochemical perspective, a 3 M sulfuric acid was chosen as optimum owing to better controllability of the material removal rate. The dissolving ions are the probable rate limiting species, indicating a compact salt-film mechanism. The average root mean square (RMS) roughness value for an electropolished surface was approximately 10 nm, which is significantly lower than a mechanically polished surface.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700