The effect of lithium-intercalation on the mechanical properties of carbon fibres
详细信息    查看全文
文摘
Carbon fibres (CFs) can be used as lightweight structural electrodes since they have high specific tensile stiffness and ultimate tensile strength (UTS), and high lithium (Li)-intercalation capability. This paper investigates the relationship between the amount of intercalated Li and the changes induced in the tensile stiffness and UTS of polyacrylonitrile-based CF tows. After a few electrochemical cycles the stiffness was not degraded and independent of the measured capacity. A drop in the UTS of lithiated CFs was only partly recovered during delithiation and clearly larger at the highest measured capacities, but remained less than 40% at full charge. The reversibility of this drop with the C-rate and measured capacity supports that the fibres are not damaged, that some Li is irreversibly trapped in the delithiated CFs and that reversible strains develop in the fibre. However, the drop in the strength does not vary linearly with the measured capacity and the drop in the ultimate tensile strain remains lower than the CF longitudinal expansion at full charge. These results suggest that the loss of strength might relate to the degree of lithiation of defectives areas which govern the tensile failure mode of the CFs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700