Characterization of microstructural strengthening in the heat-affected zone of a blast-resistant naval steel
详细信息    查看全文
文摘
The influence of simulated heat-affected zone thermal cycles on the microstructural evolution in a blast-resistant naval steel was investigated by dilatometry, microhardness testing, optical microscopy, electron backscatter diffraction and atom-probe tomography (APT) techniques. Coarsening of Cu precipitates were observed in the subcritical and intercritical heat-affected zones, with partial dissolution in the latter. A small number density of Cu precipitates and high Cu concentration in the matrix of the fine-grained heat-affected zone indicates the onset of Cu precipitate dissolution. Cu clustering in the coarse-grained heat-affected zone indicated the potential initiation of Cu reprecipitation during cooling. Segregation of Cu was also characterized by APT. The hardening and softening observed in the heat-affected zone regions was rationalized using available strengthening models.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700