Mechanical and electromagnetic shielding properties of carbon fiber reinforced silicon carbide matrix composites
详细信息    查看全文
文摘
Carbon fiber reinforced SiC matrix composites (Cf/SiC) were fabricated through chemical vapor infiltration. Effects of SiC content on the mechanical and electromagnetic properties of the as-prepared materials were studied systematically. The high volume fraction of SiC matrix is beneficial to the transfer of load to carbon fiber. With the increase of SiC content from 21.5 to 42.2 vol.%, the total porosity decreases from 38.5 to 17.8 vol.%, the flexural strength and fracture toughness of Cf/SiC increase from 38 ± 4 to 375 ± 10 MPa and from 6.2 ± 0.7 to 21 ± 0.3 MPa m1/2. The electromagnetic interference shielding effectiveness of as-prepared Cf/SiC decreases from 43 ± 1.4 to 31 ± 1.1 dB over the frequency range of 8.2–12.4 GHz with the increase of SiC content. The decease of electromagnetic interference shielding effectiveness is mainly attributed to the decline of absorption loss. With the increase of SiC content, the electrical conductivity of Cf/SiC diminishes, leading to the conspicuous drop of the conductive loss, which plays the key role in lowering the absorption loss of electromagnetic waves.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700