Design of logic gates using spiking neural P systems with homogeneous neurons and astrocytes-like control
详细信息    查看全文
文摘
In biological nervous systems, the operation of interacting neurons depends largely on the regulation from astrocytes. Inspired by this biological phenomenon, spiking neural P systems, i.e. SN P systems, with astrocyte-like control were proposed and were proven to have “Turing completeness” as computing models. In this work, the application of such systems for creating logical operators is investigated. Specifically, it is obtained in a constructive way that SN P systems with astrocyte-like control can synthesize the operations of Boolean logic gates, i.e. AND, OR, NOT, NOR, XOR and NAND gates. The resulting systems are simple and homogeneous, which means only one type of neuron with a unique spiking rule is used. With these neural-like logic gates, more complex Boolean circuits with cascade connections can be constructed. As such, they can be used to implement finite computing devices, such as the finite transducers. These results demonstrate a novel method of constructing logic circuits that work in a neural-like manner, as well as shed some lights on potential directions of designing neural circuits theoretically.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700