Functional KCa3.1 K+ channels are required for human fibrocyte migration
详细信息    查看全文
文摘

Background

Fibrocytes are bone marrow¨Cderived CD34+ collagen I¨Cpositive cells present in peripheral blood that develop ¦Á-smooth muscle actin expression and contractile activity in tissue culture. They are implicated in the pathogenesis of tissue remodeling and fibrosis in both patients with asthma and those with idiopathic pulmonary fibrosis. Targeting fibrocyte migration might therefore offer a new approach for the treatment of these diseases. Ion channels play key roles in cell function, but the ion-channel repertoire of human fibrocytes is unknown.

Objective

We sought to examine whether human fibrocytes express the KCa3.1 K+ channel and to determine its role in cell differentiation, survival, and migration.

Methods

Fibrocytes were cultured from the peripheral blood of healthy subjects and patients with asthma. Whole-cell patch-clamp electrophysiology was used for the measurement of ion currents, whereas mRNA and protein were examined to confirm channel expression. Fibrocyte migration and proliferation assays were performed in the presence of KCa3.1 ion-channel blockers.

Results

Human fibrocytes cultured from the peripheral blood of both healthy control subjects and asthmatic patients expressed robust KCa3.1 ion currents together with KCa3.1 mRNA and protein. Two specific and distinct KCa3.1 blockers (TRAM-34 and ICA-17043) markedly inhibited fibrocyte migration in transwell migration assays. Channel blockers had no effect on fibrocyte growth, apoptosis, or differentiation in cell culture.

Conclusions

The K+ channel KCa3.1 plays a key role in human fibrocyte migration. Currently available KCa3.1-channel blockers might therefore attenuate tissue fibrosis and remodeling in patients with diseases such as idiopathic pulmonary fibrosis and asthma through the inhibition of fibrocyte recruitment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700