Impact of ventricular ectopic burden in a premature ventricular contraction-induced cardiomyopathy animal model
详细信息    查看全文
文摘
Frequent premature ventricular contractions (PVCs) have been associated with PVC-induced cardiomyopathy (CM) in some patients.

Objective

The purpose of this study was to understand the cardiac consequences of different PVC burdens and the minimum burden required to induce left ventricular (LV) dysfunction.

Methods

Right ventricular apical PVCs at a coupling interval of 240 ms were introduced at different PVC burdens in 9 mongrel canines. A stepwise increase in PVC burden was implemented every 8 weeks from 0% (baseline), 7%, 14%, 25%, 33% to 50% using our premature pacing algorithm. Echocardiogram and 24-hour Holter were obtained at 4- and 8-week period for each PVC burden with a single blinded reader assessing all echocardiographic parameters including those assessed by speckle tracking imaging (EchoPAC workstation, General Electric). CM was defined as left ventricular ejection fraction (LVEF) <50% or LVEF drop >10% points. Interleukin-6 and probrain natriuretic peptide levels were obtained at the end of each PVC burden.

Results

The mean LVEF (mean heart rate) at 8 weeks for each PVC burden (0%, 7%, 14%, 33%, and 50%) were 57% ± 2.9% (85 ± 13 beats/min), 54.4% ± 3% (81 ± 10 beats/min), 53.3% ± 5% (77 ± 12 beats/min), 51.1% ± 4.2% (79 ± 14 beats/min), 47.7% ± 3.8% (80 ± 14 beats/min), and 44.7% ± 1.9% (157 ± 43 beats/min). PVC-induced CM was present in 11.1%, 44.4%, and 100% of animals with 25%, 33%, and 50% PVC burden, respectively. E/A ratio and radial strain decreased while left atrial size increased beyond 33% PVC burden. No changes in pro–brain natriuretic peptide and interleukin-6 levels were noted at any PVC burden.

Conclusion

LV systolic function (LVEF and radial strain) declined linearly as PVC burden increased. PVC-induced CM developed in some canines with 25% and 33% PVC burden, but developed in all animals with 50% PVC burden.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700