Adaptive decentralized control for a class of interconnected nonlinear systems via backstepping approach and graph theory
详细信息    查看全文
文摘
This paper is concerned with the adaptive decentralized control problem for a class of interconnected nonlinear systems, where the interconnections are assumed to be unknown and completely nonlinear. In addition, the interconnections and their bounds are allowed to contain the states of all subsystems. The main contribution is that, a strictly decentralized control scheme with compensation mechanism is developed to achieve the desirable tracking performance. More specifically, a smooth switching function is introduced to construct adaptive control laws, where the compensation mechanism is activated only if the immediate variable involved in the backstepping design exceeds a given constant, otherwise it will be turned-off. Furthermore, by combining graph theory and Lyapunov analysis method, it is proved that all the signals of the resulting closed-loop system are globally bounded, and the tracking errors of subsystems exponentially converge to a compact set, whose radius is adjustable by choosing different controller design parameters. Finally, the effectiveness of the proposed adaptive decentralized control scheme is illustrated with a simulated example.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700