A shortcut to the lysosome: The mannose-6-phosphate-independent pathway
详细信息    查看全文
文摘
Lysosomal hydrolases have long been known to be responsible for the degradation of different substrates in the cell. These acid hydrolases are synthesized in the rough endoplasmic reticulum and transported through the Golgi apparatus to the trans-Golgi network (TGN). From there, they are delivered to endosomal/lysosomal compartments, where they finally become active due to the acidic pH characteristic of the lysosomal compartment. The majority of the enzymes leave the TGN after modification with mannose-6-phosphate (M6P) residues, which are specifically recognized by M6P receptors (MPRs), ensuring their transport to the endosomal/lysosomal system.

Although M6P receptors play a major role in the intracellular transport of newly synthesized lysosomal enzymes in mammalian cells, several lines of evidence suggest the existence of alternative processes of lysosomal targeting. Among them, the two that are mediated by the M6P alternative receptors, lysosomal integral membrane protein (LIMP-2) and sortilin, have gained unequivocal support. LIMP-2 was shown to be implicated in the delivery of beta-glucocerebrosidase (GCase) to the lysosomes, whereas sortilin has been suggested to be a multifunctional receptor capable of binding several different ligands, including neurotensin and receptor-associated protein (RAP), and of targeting several proteins to the lysosome, including sphingolipid activator proteins (prosaposin and GM2 activator protein), acid sphingomyelinase and cathepsins D and H.

Here, we review the current knowledge on these two proteins: their discovery, study, structural features and cellular function, with special attention to their role as alternative receptors to lysosomal trafficking. Recent studies associating both LIMP2 and sortilin to disease are also extensively reviewed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700