Optimised prefactored compact schemes for linear wave propagation phenomena
详细信息    查看全文
文摘
A family of space- and time-optimised prefactored compact schemes are developed that minimise the computational cost for given levels of numerical error in wave propagation phenomena, with special reference to aerodynamic sound. This work extends the approach of Pirozzoli [1] to the MacCormack type prefactored compact high-order schemes developed by Hixon [2], in which their shorter Padé stencil from the prefactorisation leads to a simpler enforcement of numerical boundary conditions. An explicit low-storage multi-step Runge–Kutta integration advances the states in time. Theoretical predictions for spatial and temporal error bounds are derived for the cost-optimised schemes and compared against benchmark schemes of current use in computational aeroacoustic applications in terms of computational cost for a given relative numerical error value. One- and two-dimensional test cases are presented to examine the effectiveness of the cost-optimised schemes for practical flow computations. An effectiveness up to about 50% higher than the standard schemes is verified for the linear one-dimensional advection solver, which is a popular baseline solver kernel for computational physics problems. A substantial error reduction for a given cost is also obtained in the more complex case of a two-dimensional acoustic pulse propagation, provided the optimised schemes are made to operate close to their nominal design points.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700