Universal model for accurate calculation of tracer diffusion coefficients in gas, liquid and supercritical systems
详细信息    查看全文
文摘
In this work it is presented a new model for accurate calculation of binary diffusivities (D12) of solutes infinitely diluted in gas, liquid and supercritical solvents. It is based on a Lennard-Jones (LJ) model, and contains two parameters: the molecular diameter of the solvent and a diffusion activation energy. The model is universal since it is applicable to polar, weakly polar, and non-polar solutes and/or solvents, over wide ranges of temperature and density. Its validation was accomplished with the largest database ever compiled, namely 487 systems with 8293 points totally, covering polar (180 systems/2335 points) and non-polar or weakly polar (307 systems/5958 points) mixtures, for which the average errors were 2.65 % and 2.97 % , respectively. With regard to the physical states of the systems, the average deviations achieved were 1.56 % for gaseous (73 systems/1036 points), 2.90 % for supercritical (173 systems/4398 points), and 2.92 % for liquid (241 systems/2859 points). Furthermore, the model exhibited excellent prediction ability. Ten expressions from the literature were adopted for comparison, but provided worse results or were not applicable to polar systems. A spreadsheet for D12 calculation is provided online for users in Supplementary Data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700