First-principles Calculations of Strengthening Compounds in Magnesium Alloy: A General Review
详细信息    查看全文
文摘
First-principles computation methods play an important role in developing and designing new magnesium alloys. In this article, we present an overview of the first-principles modeling techniques used in recent years to simulate ideal models of the structure of strengthening compounds in Mg alloys. For typical Mg compounds, structural stability, mechanical properties, electronic structure and thermodynamic properties have been discussed. Specifically, the elastic anisotropies of these compounds are examined, which is highly correlated with the possibility of inducing micro-cracks. Furthermore, some heterogeneous nucleation interfaces investigated by first-principles method are reviewed. Some of the theoretical results are compared with available experimental observations. We hope to illustrate that the first-principles computation can help to accelerate the design of new Mg-based materials and the development of materials genome initiative. Remaining problems and future directions in this research field are considered.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700