Numerical Modeling and FE Analysis of CFRP/Ti Stack Orthogonal Cutting
详细信息    查看全文
文摘
Compared to the great interest of experimental studies on hybrid CFRP/Ti drilling, this paper provided a new contribution to study the hybrid composite machinability via the numerical approach. To this aim, the complex drilling operation was abstracted into the orthogonal cutting configuration (OCC) by considering the involved cutting sequence from one phase machining to another phase machining. The numerical model was established by incorporating four fundamental physical constituents (i.e., Ti layer, interface, CFRP layer and tool part) to simulate the hybrid cutting operation. Different constitutive laws and damage criteria were implemented to construct the anisotropic machinability of the stacked composite. The induced cutting responses including specific cutting energy (u) and induced damage formation, were precisely addressed versus the input variables. The numerical studies highlighted that the anisotropic machinability of the CFRP/Ti stack could be reflected in a “pigeon” like u polar map versus fiber orientation (θ). For minimizing the severe induced damage extent, high cutting speed, as well as low feed rate, should be adopted when machining this multi-phase material.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700