Symplectic coordinates on S2×S2 for perturbed Keplerian problems: Application to the dynamics of a generalised Størmer problem
详细信息    查看全文
文摘
In order to analyse the dynamics of a given Hamiltonian system in the space defined as the Cartesian product of two spheres, we propose to combine Delaunay coordinates with Poincaré-like coordinates. The coordinates are of local character and have to be selected accordingly with the type of motions one has to take into consideration, so we distinguish the following types: (i) rectilinear motions; (ii) circular and equatorial motions; (iii) circular non-equatorial motions; (iv) non-circular equatorial motions; and (v) non-circular and non-equatorial motions. We apply the theory to study the dynamics of the reduced flow of a generalised Størmer problem that is modelled as a perturbation of the Kepler problem. After using averaging and reduction theories, the corresponding flow is analysed on the manifold S2×S2, calculating the occurring equilibria and their stability. Finally, the flow of the original problem is reconstructed, concluding the existence of some families of periodic solutions and KAM tori.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700