Modeling of 3D woven composites using the digital element approach for accurate prediction of kinking under compressive loads
详细信息    查看全文
文摘
Model definition accuracy dictates the reliability of a predictive analysis for 3D woven composites (3DWC). The traditional modeling approach is based on analysis of ideal geometry with user specified imperfections. In that case, co-relating the actual imperfections arising from manufacturing processes with that of the model becomes an iterative process. In this study, a digital element (DE) approach is implemented for creating the woven architecture of the composite. This technique simulates the individual fibers and their interactions allowing the user to create a reference unit cell with imperfect geometry induced during manufacturing stages of 3DWCs. Thus the response and strength analysis account for the unique weaving signature and provide better predictions without the necessity to run iterative analysis procedures required for idealized geometry models. X-ray CT images or detailed statistical data for variations in specimen geometry are not required which makes this approach more attractive in terms of cost and creation time. A representative model created using the DE approach is used for prediction of compressive failure of 3DWC without having to seed imperfections for failure initiation. The analysis also captures the formation of a kink band as observed in experimental tests. Results of this study are compared with the experimental results and simulation results of idealized geometry reported previously in literature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700