Metabolism of Methyl tert-butyl Ether and Other Gasoline Ethers by Human Liver Microsomes and Heterologously Expressed Human Cytochromes P450: Identification of CYP2A6 as a Major Catalyst
详细信息    查看全文
文摘
To reduce the production of carbon monoxide and other pollutants in motor vehicle exhaust, methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME) are added to gasoline as oxygenates for more complete combustion. Previously, we demonstrated that human liver is active in metabolizing MTBE to tert-butyl alcohol (TBA) and that cytochrome P450 (CYP) enzymes play a critical role in the metabolism of MTBE. The present study demonstrates that human liver is also active in the oxidative metabolism of ETBE and TAME. A large interindividual variation in metabolizing these gasoline ethers was observed in 15 human liver microsomal samples. The microsomal activities in metabolizing MTBE, ETBE, and TAME were highly correlated among each other (r, 0.91–0.96), suggesting that these ethers are metabolized by the same enzyme(s). Correlation analysis of the ether-metabolizing activities with individual CYP enzyme activities in the liver microsomes showed that the highest degree of correlation was with human CYP2A6 (r, 0.90–0.95), which is constitutively expressed in human livers and known to be polymorphic. CYP2A6 displayed the highest turnover number in metabolizing gasoline ethers among a battery of human CYP enzymes expressed in human B-lymphoblastoid cells. Kinetic studies on MTBE metabolism with three human liver microsomes exhibited apparent Km values that ranged from 28 to 89 μM and the Vmax values from 215 to 783 pmol/min/mg, with similar catalytic efficiency values (7.7 to 8.8 μl/min/mg protein). Metabolism of MTBE, ETBE, and TAME by human liver microsomes was inhibited by coumarin, a known substrate of human CYP2A6, in a concentration-dependent manner. Monoclonal antibody against human CYP2A6 caused a significant inhibition (75 % to 95 % ) of the metabolism of MTBE, ETBE, and TAME in human liver microsomes. Taken together, these results clearly indicate that in human liver, CYP2A6 is the major enzyme responsible for the metabolism of MTBE, ETBE, and TAME.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700