Dynamic response of transiently trapped entanglements in polymer networks
详细信息    查看全文
文摘
The structure and viscoelastic response of polymer networks are highly sensitive to the presence of pendant chains. These imperfections, that are unavoidable produced during a cross-linking reaction, reduce the cross-linking density and affect the damping response of elastomers. In this work the dynamics of pendant chains present in a cross-linked network is investigated using end-linked poly(dimethyl-siloxane) networks with well defined structure. For this purpose, model networks containing 10 and 20聽wt% of two different monodisperse pendant chains with molecular weights well above the critical entanglement molecular weight and some of their blends were prepared. It was found that, within this range of concentration of pendant chains, the long-time dynamic response of the networks was nearly insensitive to the content of pendant material but deeply influenced by the average molar mass of these defects. While the equilibrium behavior of the networks can be well described by a mean field theory for rubber elasticity, the long time relaxational dynamics can be rationalized in terms of the Pearson-Helfand picture for the arm retraction process. Within this theoretical picture, the dynamics can be explained in terms of the molecular architecture of the network, the Rouse time and the weight average molar mass of the pendant material.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700