Structural alterations of the heme environment of cytochrome P450cam and the Y96F mutant as deduced by resonance Raman spectroscopy
详细信息    查看全文
文摘
Resonance Raman spectroscopy at 2.5cm−1 resolution was used to probe differences in wild-type and Y96F mutant P450cam (CYP101), both with and without bound camphor or styrene substrates. In the substrate-free state, the spin state equilibrium is shifted from 6-coordinate low spin (6CLS) toward more 5-coordinate high spin (5CHS) when tyrosine-96 in the substrate pocket is replaced by phenylalanine. About 25 % of substrate-free Y96F mutant is 5CHS as opposed to 8 % for substrate-free wild-type P450cam. Spin equilibrium constants calculated from Raman intensities indicate that the driving force for electron transfer from putidaredoxin, the natural redox partner of P450cam, is significantly smaller on styrene binding than for camphor binding. Spectral differences suggest that there is a tilt in camphor toward the pyrrole III ring on Y96F mutation. This finding is consistent with the altered product distribution found for camphor hydroxylation by the Y96F mutant relative to the single enantiomer produced by the wild-type enzyme.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700