Late Ordovician carbon isotope trend in Estonia, its significance in stratigraphy and environmental analysis
详细信息    查看全文
文摘
Carbon isotope changes during most of Late Ordovician time (from the mid-Caradoc Kinnekulle K-bentonite until the beginning of the Silurian) were investigated. As the corresponding sequence of rocks is stratigraphically nearly complete in Estonia, an attempt was made to use it to elaborate the general pattern of carbon isotope changes in the Late Ordovician. Complications were caused by several local or regional hiatuses in the middle and late Caradoc and Hirnantian. A total of 385 whole rock samples were studied from eight drill cores in northern and central Estonia. The following positive carbon isotope events were observed: (1) the mid-Caradoc excursion (peak δ13C value 2.2‰) in the uppermost part of the Keila Stage, also known in Sweden; (2) the first late Caradoc excursion (1.9‰) in the lower part of the Rakvere Stage; (3) the second late Caradoc excursion (2.4‰) in the upper part of the Nabala Stage; (4) the early Ashgill excursion (2.5‰) in the lowermost part of the Pirgu Stage; (5) the widely known large Hirnantian excursion (in Estonia the peak value reaches 6.7‰) in the Porkuni Stage. The study interval comprises a long (10 Ma) period characterized by low-magnitude carbon isotope changes and a following brief (2 Ma) interval with large changes. No obvious lithological preference for hosting the positive shifts was recorded. In principle, the δ13C values exceeding the background values may occur in all types of rocks present in a sedimentary basin. Several δ13C positive excursions (values 1.5‰ to 3‰) in the Mohawkian of North America are evidence that the minor Caradoc and early Ashgill δ13C positive shifts in Baltoscandia may have counterparts in Laurentia. If correctly correlated, these shifts may have global significance. The Hirnantian excursion is usually linked to a major glacial event, even if some carbon cycling mechanisms are not completely understood. The environmental causes suggested for the earlier minor shifts range from global climatic and glacial events to very local changes in basin regime and sea level. Our study supports the primary role of climatic or climatically triggered oceanic processes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700