Numerical Investigation on the Effects of Bore Reduction in a High Performance Turbocharged GDI Engine. 3D Investigation of Knock Tendency
详细信息    查看全文
文摘
Downsizing is a must for current high performance turbocharged SI engines. This is often achieved through the reduction of cylinder number, while keeping constant unit displacement and increasing boost pressure. However, the ensuing higher loads strongly increases the risk of abnormal combustion and thermo-mechanical failures. An alternative path to downsizing is the reduction of cylinder bore: this approach is more expensive, requiring a brand new design of the combustion system, but it also provides some advantages.

The goal of the present paper is to explore the potential of bore reduction for achieving a challenging downsizing target, while preserving the engine knock safety margins.

A current V8 GDI turbocharged sporting engine is taken as a reference, and a preliminary CFD-3D analysis is carried out in order to define the most suitable bore-to-stroke ratio. On this basis, bore is reduced by 11% at constant stroke, thus obtaining a reduction of about 20% on the engine displacement.

In order to achieve the same peak power target, both engine boost and spark advance are adjusted until the knock safety margin of the original engine is met. 3D CFD tools, accurately calibrated on the reference engine, are used to address engine design and the calibration of the operating parameters.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700