A terrain-following grid transform and preconditioner for parallel, large-scale, integrated hydrologic modeling
详细信息    查看全文
文摘
A terrain-following grid formulation (TFG) is presented for simulation of coupled variably-saturated subsurface and surface water flow. The TFG is introduced into the integrated hydrologic model, ParFlow, which uses an implicit, Newton Krylov solution technique. The analytical Jacobian is also formulated and presented and both the diagonal and non-symmetric terms are used to precondition the Krylov linear system. The new formulation is verified against an orthogonal stencil and is shown to provide increased accuracy at lower lateral spatial discretization for hillslope simulations. Using TFG, efficient scaling to a large number of processors (16,384) and a large domain size (8.1 Billion unknowns) is shown. This demonstrates the applicability of this formulation to high-resolution, large-spatial extent hydrology applications where topographic effects are important. Furthermore, cases where the analytical Jacobian is used for the Newton iteration and as a non-symmetric preconditioner for the linear system are shown to have faster computation times and better scaling. This demonstrates the importance of solver efficiency in parallel scaling through the use of an appropriate preconditioner.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700