Does a low-shrinking composite induce less stress at the adhesive interface?
详细信息    查看全文
文摘

Objectives

Polymerization shrinkage of a composite in a high configuration-factor (C-factor) cavity leads to polymerization shrinkage stress. In the prevention of high polymerization shrinkage stress, a low-shrinking silorane composite (Filtek Silorane, FS, 3M ESPE) was recently marketed. Therefore, we investigated the effect of C-factor (flat surface vs. class-I cavity) and different composite application protocols on the bonding effectiveness of a low-shrinking composite to human dentin.

Methods

A low-shrinking silorane-based composite (FS) and a conventional methacrylate-based composite (Filtek Z100, 3 M-ESPE) were bonded to standardized occlusal class-I cavities (4 mm × 4 mm × 2.5 mm) and to flat mid-coronal dentin surfaces using the two-step self-etch adhesive ‘Silorane System Adhesive’ (3 M-ESPE). Eight experimental groups were formed, according to the following treatment protocols: Z100 ‘flat’(1), Z100 ‘cavity’(2), FS ‘flat’(3), FS ‘flat/bulk-filled’(4), FS ‘cavity/bulk-filled’(5), FS ‘cavity/layered-filled’(6), FS ‘cavity/flowable cured’(7) and FS ‘cavity/flowable uncured’(8). For each group, at least 5 teeth were used. After 1 week of water storage, the teeth were sectioned to 1 mm × 1 mm (non-trimmed) sticks to measure the micro-tensile bond strength (μTBS).

Results

No statistical difference in μTBS was recorded between Z100 ‘flat’(1) and FS ‘flat’(3). Bonding to class-I cavity dentin lowered the μTBS in all groups, but this was only statistically significant for FS ‘cavity/bulk-filled’(5) and FS ‘cavity/flowable uncured’(8).

Significance

Using the two-step self-etch Silorane System Adhesive, the conventional composite Filtek Z100 and the low-shrinking composite Filtek Silorane bonded equally well to dentin. Bulk-filling with Filtek Silorane (FS ‘flat/bulk-filled’(4)) significantly decreased the μTBS, suggesting that factors other than polymerization shrinkage influenced the μTBS.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700