Mode of action of acetylxylan esterases on acetyl glucuronoxylan and acetylated oligosaccharides generated by a GH10 endoxylanase
详细信息    查看全文
文摘

Background

Substitutions on the xylan main chain are widely accepted to limit plant cell wall degradability and acetylations are considered as one of the most important obstacles. Hence, understanding the modes of action of a range of acetylxylan esterases (AcXEs) is of ample importance not only to increase the understanding of the enzymology of plant decay/bioremediation but also to enable efficient bioconversion of plant biomass.

Methods

In this study, the modes of action of acetylxylan esterases (AcXEs) belonging to carbohydrate esterase (CE) families 1, 4, 5 and 6 on xylooligosaccharides generated from hardwood acetyl glucuronoxylan were compared using MALDI ToF MS. Supporting data were obtained by following enzymatic deacetylation by 1H NMR spectroscopy.

Conclusions

None of the used enzymes were capable of complete deacetylation, except from linear xylooligosaccharides which were completely deacetylated by some of the esterases in the presence of endoxylanase. A clear difference was observed between the performance of the serine-type esterases of CE families 1, 5 and 6, and the aspartate-metalloesterases of family CE4. The difference is mainly due to the inability of CE4 AcXEs to catalyze deacetylation of 2,3-di-O-acetylated xylopyranosyl residues. Complete deacetylation of a hardwood acetyl glucuronoxylan requires additional deacetylating enzyme(s).

General significance

The results contribute to the understanding of microbial degradation of plant biomass and outline the way to achieve complete saccharification of plant hemicelluloses which did not undergo alkaline pretreatment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700