Spatial Population Expansion Promotes the Evolution of Cooperation in an Experimental Prisoner¡¯s Dilemma
详细信息    查看全文
文摘
| Figures/TablesFigures/Tables | ReferencesReferences

Summary

Cooperation is ubiquitous in nature, but explaining its existence remains a central interdisciplinary challenge []. Cooperation is most difficult to explain in the Prisoner¡¯s Dilemma game, where cooperators always lose in direct competition with defectors despite increasing mean fitness []. Here we demonstrate how spatial population expansion, a widespread natural phenomenon [], promotes the evolution of cooperation. We engineer an experimental Prisoner¡¯s Dilemma game in the budding yeast Saccharomyces cerevisiae to show that, despite losing to defectors in nonexpanding conditions, cooperators increase in frequency in spatially expanding populations. Fluorescently labeled colonies show genetic demixing [] of cooperators and defectors, followed by increase in cooperator frequency as cooperator sectors overtake neighboring defector sectors. Together with lattice-based spatial simulations, our results suggest that spatial population expansion drives the evolution of cooperation by (1) increasing positive genetic assortment at population frontiers and (2) selecting for phenotypes maximizing local deme productivity. Spatial expansion thus creates a selective force whereby cooperator-enriched demes overtake neighboring defector-enriched demes in a ¡°survival of the fastest.¡± We conclude that colony growth alone can promote cooperation and prevent defection in microbes. Our results extend to other species with spatially restricted dispersal undergoing range expansion, including pathogens, invasive species, and humans.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700