Simultaneous engagement of mechanical stretching and surface pattern promotes cardiomyogenic differentiation of human mesenchymal stem cells
详细信息    查看全文
文摘
It has been widely recognized and proved that biophysical factors for mimicking in vivo conditions should be also considered to have stem cells differentiated into desired cell type in vitro along with biochemical factors. Biophysical factors include substrate and biomechanical conditions. This study focused on the effect of biomimetic mechanical stretching along with changes in substrate topography to influence on cardiomyogenic differentiation of human mesenchymal stem cells (hMSCs). Elastic micropatterned substrates were made to mimic the geometric conditions surrounding cells in vivo. To mimic biomechanical conditions due to beating of the heart, mechanical stretching was applied parallel to the direction of the pattern (10% elongation, 0.5 Hz, 4 h/day). Suberoylanilide hydroxamic acid (SAHA) was used as a biochemical factor. The micropatterned substrate was found more effective in the alignment of cytoskeleton and cardiomyogenic differentiation compared with flat substrate. Significantly higher expression levels of related markers [GATA binding protein 4 (GATA4), troponin I, troponin T, natriuretic peptide A (NPPA)] were observed when mechanical stretching was engaged on micropatterned substrate. In addition, 4 days of mechanical stretching was associated with higher levels of expression than 2 days of stretching. These results indicate that simultaneous engagement of biomimetic environment such as substrate pattern and mechanical stimuli effectively promotes the cardiomyogenic differentiation of hMSCs in vitro. The suggested method which tried to mimic in vivo microenvironment would provide systematic investigation to control cardiomyogenic differentiation of hMSCs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700