Mineralogical and geochemical constraints on contribution of magma mixing and fractional crystallization to high-Mg adakite-like diorites in eastern Dabie orogen, East China
详细信息    查看全文
文摘
The Liujiawa pluton which is located near the eastern boundary of the Dabie orogen is composed of multiple lithologic units including mainly gabbronorites, diorites, granodiorites and hornblende gabbros. Gabbronorites and hornblende gabbros occur as enclaves in dioritic hosts which show gradual contact with granodiorites. Zircon U-Pb dating indicates that gabbronorites and diorites formed coevally at ~ 128 Ma, but they have distinct zircon Hf isotopes with ¦ÅHf(t) of ? 26 to ? 23 (gabbronorite) and of ? 32 to ? 27 (diorite) respectively. Petrographic observations and rock-forming mineral compositions clearly show mixing between mafic and felsic magma end-members, which might have formed the homogeneous whole-rock Sr-Nd isotopes with ¦ÅNd(t) of ? 17 to ? 25 and initial 87Sr/86Sr of 0.707 to 0.709. As revealed by zircon Hf isotopes, F concentrations in amphibole and biotite and thermodynamic modeling of crystallization, the gabbronorites represent enriched lithospheric mantle-derived magmas which evolved by fractional crystallization of orthopyroxene, clinopyroxene, magnetite and/or amphibole, whereas the granodiorites may be derived from the Dabie Archean basement. Mineralogical and geochemical data as well as major and trace element modeling show that the origin of diorites, previously interpreted as high-Mg adakites, can be explained by magma mixing between the crust-derived granodioritic magmas and the differentiation products of mantle-derived gabbronoritic magmas. As a result, the high-Mg adakite-like geochemistry of the diorites is a consequence of magma differentiation at a crustal depth, involving fractional crystallization and magma mixing, rather than an intrinsic feature of primitive melts. The mantle upwelling in the adjacent central Middle-Lower Yangtze River metallogenic (MLYR) belt during Late Jurassic-Early Cretaceous belt might have acted as a precursor and triggered the partial melting of lithospheric mantle beneath the eastern Dabie orogen and the further melting of orogenic basement, consistent with the model of Zhang et al. (2010) suggesting a magmatic link between the MLYR belt and the southeastern Dabie orogen.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700