Ultrasensitive and highly selective detection of methoxy propanol based on Ag-decorated SnO2 hollow nanospheres
详细信息    查看全文
文摘
Ag-decorated SnO2 hollow spheres with different mass ratios were synthesized through a two-step synthesis route. The morphology of as-prepared materials was characterized via FESEM and TEM microscopes, and the results proved the rough and porous spherical structures. The EDX and XPS patterns verified the elementary composition, especially for Ag/SnO2, the standard peaks of Ag were obviously observed. The N2 isotherm of SnO2 hollow spheres belongs to a type-IV isotherm with a large type H3 hysteresis loop. The pore size distribution covered a range of 35–80 nm and the sample showed a high BET surface area of 31.91 m2/g. During the systematic examinations of gas sensing performance, 5 wt% Ag/SnO2 showed superior properties, including the ultrahigh response of over one hundred to methoxy propanol within a wide concentration range and the excellent selectivity for detecting methoxy propanol among other gases. Moreover, the synthesis mechanism and gas sensing mechanism were discussed, which indicated that both the morphology of SnO2 hollow spheres and the catalytic effect of Ag nanoparticles played important roles on the gas sensing properties, and could be used for the further design of gas sensor utilizing other oxide semiconductors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700