Structural characterization of highly branched glucan sheath from Ceriporiopsis subvermispora
详细信息    查看全文
文摘
Wood rotting basidiomycetes produce extracellular mucilaginous sheaths interfacing fungal hyphae and plant biomass. While the versatility of these fungal sheaths has been addressed, sheaths generated by selective white-rot fungi remain poorly understood. To fill this gap, the sheath produced by the basidiomycete Ceriporiopsis subvermispora, which degrades lignin while inflicting limited cellulose damage, was analyzed in this study. Fluorescence and transmission electron microscopy revealed that the sheath formed three days after inoculation into a beech wood slice on an agar plate and was embedded at the interface between fungal hyphae and wood cell walls. The sheath’s chemical structure was evaluated from fungus cultures in a liquid medium containing [U-13C6]-d-glucose and beech wood slices. Compositional analysis, methylation analysis, and 13C NMR demonstrated that the sheath mainly consisted of a comb-like β-1,6-glucopyranose residue-branched β-1,3-glucan, which is advantageous to retain water and extracellular secondary metabolites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700