The microstructure of as-quenched 12Mn steel
详细信息    查看全文
文摘
Fe-12Mn steel has the unique and interesting property that, when quenched to α′   martensite from the austenite phase, it forms an ultrafine grained microstructure that has exceptional resistance to cleavage fracture at cryogenic temperatures. The present research was undertaken to complete the characterization of this microstructure and understand why it forms and why it has such exceptional crack resistance. A combination of EBSD and TEM analysis shows that the microstructure is a dislocated lath martensite in which the laths have the Kurdjumov-Sachs relation to the parent austenite. As in other dislocated lath martensites, the prior austenite grains are divided into packets, each of which contains the 6 (of 24) KS variants that mate with the same {111}γ{111}γ plane. Uniquely, however, the packets are stacks of thin plates that contain all 6 KS variants. The variants within the plate are organized into 3 pair of twinned KS variants that are elongated along their {112}α{112}α twin planes, rotated 120° from one another, and interwoven to form the 6-variant plate. The ultrafine grains are the laths themselves; twin boundaries between KS variants are known to provide strong barriers to cleavage crack propagation. This unusual microstructure is apparently due to the transformation path; austenite transforms to the hexagonal ε martensite phase before its ultimate transformation to α′  , and the 6-variant plate is the preferred element to minimize elastic energy in a microstructure created by a dominant γ→ε→α′γ→ε→α′ transformation path.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700