Error estimates of a high order numerical method for solving linear fractional differential equations
详细信息    查看全文
文摘
In this paper, we first introduce an alternative proof of the error estimates of the numerical methods for solving linear fractional differential equations proposed in Diethelm [6] where a first-degree compound quadrature formula was used to approximate the Hadamard finite-part integral and the convergence order of the proposed numerical method is O(Δt2&minus;α),0<α<1O(Δt2&minus;α),0<α<1, where α is the order of the fractional derivative and Δt is the step size. We then use a similar idea to prove the error estimates of the high order numerical method for solving linear fractional differential equations proposed in Yan et al. [37], where a second-degree compound quadrature formula was used to approximate the Hadamard finite-part integral and we show that the convergence order of the numerical method is O(Δt3&minus;α),0<α<1O(Δt3&minus;α),0<α<1. Numerical examples are given to show that the numerical results are consistent with the theoretical results.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700