Higher Hickerson formula
详细信息    查看全文
文摘
In r0110">[11], Hickerson made an explicit formula for Dedekind sums trieve&_eid=1-s2.0-S0022314X16301548&_mathId=si1.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=a793f7facdb680f1d93c110e62574a92" title="Click to view the MathML source">s(p,q) in terms of the continued fraction of trieve&_eid=1-s2.0-S0022314X16301548&_mathId=si2.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=c754417fa40160ef3561c82ad5e61478" title="Click to view the MathML source">p/q. We develop analogous formula for generalized Dedekind sums trieve&_eid=1-s2.0-S0022314X16301548&_mathId=si3.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=50921a92e992d9bcb46d77112310dc01" title="Click to view the MathML source">si,j(p,q) defined in association with the trieve&_eid=1-s2.0-S0022314X16301548&_mathId=si4.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=6d8bba80a3ff6f6fa5cbf0fd6f7131e9" title="Click to view the MathML source">xiyj-coefficient of the Todd power series of the lattice cone in trieve&_eid=1-s2.0-S0022314X16301548&_mathId=si5.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=a6e0cd47c5e9badb8a166515fc840d6b" title="Click to view the MathML source">R2 generated by trieve&_eid=1-s2.0-S0022314X16301548&_mathId=si6.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=92f11dee46d081ca88d5b5d14cd7c151" title="Click to view the MathML source">(1,0) and trieve&_eid=1-s2.0-S0022314X16301548&_mathId=si7.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=3481483978028da6fd62d31f9d298748" title="Click to view the MathML source">(p,q). The formula generalizes Hickerson's original one and reduces to Hickerson's for trieve&_eid=1-s2.0-S0022314X16301548&_mathId=si8.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=956405bad31eb5d3a361ec5075979e01" title="Click to view the MathML source">i=j=1. In the formula, generalized Dedekind sums are divided into two parts: the integral trieve&_eid=1-s2.0-S0022314X16301548&_mathId=si9.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=099c6f0e102a6cedc9ffbf32a46641bb">View the MathML source and the fractional trieve&_eid=1-s2.0-S0022314X16301548&_mathId=si10.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=d90ac1223f8bb67d181b25c20727c386">View the MathML source. We apply the formula to Siegel's formula for partial zeta values at a negative integer and obtain a new expression which involves only trieve&_eid=1-s2.0-S0022314X16301548&_mathId=si9.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=099c6f0e102a6cedc9ffbf32a46641bb">View the MathML source the integral part of generalized Dedekind sums. This formula directly generalizes Meyer's formula for the special value at 0. Using our formula, we present the table of the partial zeta value at trieve&_eid=1-s2.0-S0022314X16301548&_mathId=si11.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=689ff79aa1b80b4bb5d1d0ad78b952b6" title="Click to view the MathML source">s=−1 and −2 in more explicit form. Finally, we present another application on the equidistribution property of the fractional parts of the graph trieve&_eid=1-s2.0-S0022314X16301548&_mathId=si12.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=02df000922d3a943c32a4fa5535f840f">View the MathML source for a certain integer trieve&_eid=1-s2.0-S0022314X16301548&_mathId=si13.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=285c25c2919bc817ce00b24b2077146a" title="Click to view the MathML source">Ri+j depending on trieve&_eid=1-s2.0-S0022314X16301548&_mathId=si14.gif&_user=111111111&_pii=S0022314X16301548&_rdoc=1&_issn=0022314X&md5=feebb1991c9eb9545515f1bc4b33537f" title="Click to view the MathML source">i+j.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700