Impact of Yttrium-90 Microsphere Density, Flow Dynamics, and Administration Technique on Spatial Distribution: Analysis Using an In Vitro Model
详细信息    查看全文
文摘
To investigate material density, flow, and viscosity effects on microsphere distribution within an in vitro model designed to simulate hepatic arteries.Materials and MethodsA vascular flow model was used to compare distribution of glass and resin surrogates in a clinically derived flow range (60–120 mL/min). Blood-mimicking fluid (BMF) composed of glycerol and water (20%–50% vol/vol) was used to simulate a range of blood viscosities. Microsphere distribution was quantified gravimetrically, and injectate solution was dyed to enable quantification by UV spectrophotometry. Microsphere injection rate (5–30 mL/min) and the influence of contrast agent dilution of injection solution (0%–60% vol/vol) were also investigated.ResultsNo significant differences in behavior were observed between the glass and resin surrogate materials under any tested flow conditions (P = .182; n = 144 injections). Microspheres tend to align more consistently with the saline injection solution (r2 = 0.5712; n = 144) compared with total BMF flow distribution (r2 = 0.0104; n = 144). The most predictable injectate distribution (ie, greatest alignment with BMF flow, < 5% variation) was demonstrated with > 10-mL/min injection rates of pure saline solution, although < 20% variation with glass microsphere distribution was observed with injection solution containing as much as 30% contrast medium when injected at > 20 mL/min.ConclusionsGlass and resin yttrium-90 surrogates demonstrated similar distribution in a range of clinically relevant flow conditions, suggesting that microsphere density does not have a significant influence on microsphere distribution. Injection parameters that enhanced the mixing of the spheres with the BMF resulted in the most predictable distribution.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700