A novel in vivo regulatory role of P-glycoprotein in alloimmunity
详细信息    查看全文
文摘
P-glycoprotein (P-gp) is required for adaptive immunity through defined functions in T cell activation and antigen presenting cell (APC) maturation. The potential role of P-gp as an in vivo regulator of alloimmunity is currently unknown. Here we show that P-gp blockade prolongs graft survival in a murine heterotopic cardiac allotransplantation model through in vivo inhibition of the T helper 1 (Th1) cytokine IFN-γ and the Th2 product IL-4, and via downregulation of the APC-expressed positive costimulatory molecule CD80. In vitro, the P-gp antagonist PSC833, a non-calcineurin-inhibitory cyclosporine A analogue, specifically inhibited cellular efflux of the P-gp substrate rhodamine-123 in wild-type CD3+ T cells and MHC class II+ APCs but not their P-gp knockout counterparts that lacked rhodamine-123 efflux capacity. Additionally, P-gp blockade significantly inhibited murine alloimmune T cell activation in a dose-dependent fashion. In vivo, P-gp blockade significantly prolonged graft survival in Balb/c recipients of C57BL/6 cardiac allografts from 8.5 ± 0.5 to 11.7 ± 0.5 days (P < 0.01), similar in magnitude to the effects of monotherapy with cyclosporine A. Moreover, P-gp blockade, compared to controls, attenuated intragraft expression of CD3 and CD80, but not CD86, and inhibited IFN-γ and IL-4 production (P < 0.05). In the setting of systemic CD86 inhibition, P-gp blockade suppressed IFN-γ and IL-4 production significantly further (to 98 % and 89 % inhibition, respectively) compared to either P-gp or anti-CD86 blockade alone, and markedly prolonged allograft survival compared to anti-CD86 blockade alone (40.5 ± 4.6 versus 22.5 ± 2.6 days, respectively, P < 0.01). Our findings define a novel in vivo regulatory role of P-gp in alloimmunity and identify P-gp as a potential therapeutic target in allotransplantation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700