Methylglyoxal activates NF-κB nuclear translocation and induces COX-2 expression via a p38-dependent pathway in synovial cells
详细信息    查看全文
文摘
There is growing evidence of an increased prevalence of osteoarthritis (OA) among people with diabetes. Synovial inflammation and increased expression of cyclooxygenase-2 (COX-2) are two key features of patients with OA. Methylglyoxal (MGO) is a common intermediate in the formation of advanced glycation end-products, and its concentration is also typically higher in diabetes. In this study, we investigated the effects of the treatment of different MGO concentrations to rabbit HIG-82 synovial cells on COX-2 expression.

Main methods

The MGO induced COX-2 mRNA expression was detected by quantitative polymerase chain reaction. The MGO induced COX-2 protein production and its signaling pathways were detected by western blotting. The nuclear factor-kappa B (NF-κB) nuclear translocation by MGO was examined by immunofluorescence.

Key findings

In the present study, we find that MGO has no toxic effects on rabbit synovial cells under the experimental conditions. Our analysis demonstrates that MGO induced COX-2 mRNA and protein production. Moreover, MGO induces p38-dependent COX-2 protein expression as well as the phosphorylations of extracellular signal-regulated kinase, c-Jun N-terminal kinase (JNK), and Akt/mammalian target of rapamycin (mTOR)/p70S6K; however, inhibition of JNK and Akt/mTOR/p70S6K phosphorylations further activates COX-2 protein expression. Furthermore, MGO is shown to activate of nuclear factor-kappa B (NF-κB) nuclear translocation.

Significance

Our results suggest that MGO can induce COX-2 expression via a p38-dependent pathway and activate NF-κB nuclear translocation in synovial cells. These results provide insight into the pathogenesis of the synovial inflammation under the diabetic condition associated with higher MGO levels.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700